
 MODULE-III

Syllabus:

Memory Management Strategies

Contiguous and Non-Contiguous allocation

Virtual memory Management

Demand Paging

Page Placement and Replacement Policies

Operating System - Memory Management

Memory management is the functionality of an operating system which handles or
manages primary memory and moves processes back and forth between main
memory and disk during execution. Memory management keeps track of each and
every memory location, regardless of either it is allocated to some process or it is
free. It checks how much memory is to be allocated to processes. It decides which
process will get memory at what time. It tracks whenever some memory gets freed
or unallocated and correspondingly it updates the status.

This tutorial will teach you basic concepts related to Memory Management.

Process Address Space

The process address space is the set of logical addresses that a process
references in its code. For example, when 32-bit addressing is in use, addresses
can range from 0 to 0x7fffffff; that is, 2^31 possible numbers, for a total theoretical
size of 2 gigabytes.

The operating system takes care of mapping the logical addresses to physical
addresses at the time of memory allocation to the program. There are three types of
addresses used in a program before and after memory is allocated −

S.N. Memory Addresses & Description

1
Symbolic addresses

The addresses used in a source code. The variable names, constants, and
instruction labels are the basic elements of the symbolic address space.

2
Relative addresses

At the time of compilation, a compiler converts symbolic addresses into relative
addresses.

3
Physical addresses

The loader generates these addresses at the time when a program is loaded into
main memory.

Virtual and physical addresses are the same in compile-time and load-time address-
binding schemes. Virtual and physical addresses differ in execution-time address-
binding scheme.

The set of all logical addresses generated by a program is referred to as a logical
address space. The set of all physical addresses corresponding to these logical
addresses is referred to as a physical address space.

The runtime mapping from virtual to physical address is done by the memory
management unit (MMU) which is a hardware device. MMU uses following
mechanism to convert virtual address to physical address.

 The value in the base register is added to every address generated by a user
process, which is treated as offset at the time it is sent to memory. For
example, if the base register value is 10000, then an attempt by the user to
use address location 100 will be dynamically reallocated to location 10100.

 The user program deals with virtual addresses; it never sees the real physical
addresses.

Static vs Dynamic Loading

The choice between Static or Dynamic Loading is to be made at the time of
computer program being developed. If you have to load your program statically,
then at the time of compilation, the complete programs will be compiled and linked
without leaving any external program or module dependency. The linker combines
the object program with other necessary object modules into an absolute program,
which also includes logical addresses.

If you are writing a Dynamically loaded program, then your compiler will compile the
program and for all the modules which you want to include dynamically, only
references will be provided and rest of the work will be done at the time of
execution.

At the time of loading, with static loading, the absolute program (and data) is
loaded into memory in order for execution to start.

If you are using dynamic loading, dynamic routines of the library are stored on a
disk in relocatable form and are loaded into memory only when they are needed by
the program.

Static vs Dynamic Linking

As explained above, when static linking is used, the linker combines all other
modules needed by a program into a single executable program to avoid any
runtime dependency.

When dynamic linking is used, it is not required to link the actual module or library
with the program, rather a reference to the dynamic module is provided at the time
of compilation and linking. Dynamic Link Libraries (DLL) in Windows and Shared
Objects in Unix are good examples of dynamic libraries.

Swapping

Swapping is a mechanism in which a process can be swapped temporarily out of
main memory (or move) to secondary storage (disk) and make that memory
available to other processes. At some later time, the system swaps back the
process from the secondary storage to main memory.

Though performance is usually affected by swapping process but it helps in running
multiple and big processes in parallel and that's the reason Swapping is also
known as a technique for memory compaction.

The total time taken by swapping process includes the time it takes to move the
entire process to a secondary disk and then to copy the process back to memory,
as well as the time the process takes to regain main memory.

Let us assume that the user process is of size 2048KB and on a standard hard disk
where swapping will take place has a data transfer rate around 1 MB per second.
The actual transfer of the 1000K process to or from memory will take

2048KB / 1024KB per second

= 2 seconds

= 2000 milliseconds

Now considering in and out time, it will take complete 4000 milliseconds plus other
overhead where the process competes to regain main memory.

Memory Allocation

Main memory usually has two partitions −

 Low Memory − Operating system resides in this memory.

 High Memory − User processes are held in high memory.

Operating system uses the following memory allocation mechanism.

S.N. Memory Allocation & Description

1
Single-partition allocation

In this type of allocation, relocation-register scheme is used to protect user
processes from each other, and from changing operating-system code and data.
Relocation register contains value of smallest physical address whereas limit
register contains range of logical addresses. Each logical address must be less than
the limit register.

2
Multiple-partition allocation

In this type of allocation, main memory is divided into a number of fixed-sized
partitions where each partition should contain only one process. When a partition is
free, a process is selected from the input queue and is loaded into the free partition.
When the process terminates, the partition becomes available for another process.

Fragmentation

As processes are loaded and removed from memory, the free memory space is
broken into little pieces. It happens after sometimes that processes cannot be
allocated to memory blocks considering their small size and memory blocks remains
unused. This problem is known as Fragmentation.

Fragmentation is of two types −

S.N. Fragmentation & Description

1
External fragmentation

Total memory space is enough to satisfy a request or to reside a process in it, but it
is not contiguous, so it cannot be used.

2
Internal fragmentation

Memory block assigned to process is bigger. Some portion of memory is left
unused, as it cannot be used by another process.

The following diagram shows how fragmentation can cause waste of memory and a
compaction technique can be used to create more free memory out of fragmented
memory −

External fragmentation can be reduced by compaction or shuffle memory contents
to place all free memory together in one large block. To make compaction feasible,
relocation should be dynamic.

The internal fragmentation can be reduced by effectively assigning the smallest
partition but large enough for the process.

Paging

A computer can address more memory than the amount physically installed on the
system. This extra memory is actually called virtual memory and it is a section of a
hard that's set up to emulate the computer's RAM. Paging technique plays an
important role in implementing virtual memory.

Paging is a memory management technique in which process address space is
broken into blocks of the same size called pages (size is power of 2, between 512

bytes and 8192 bytes). The size of the process is measured in the number of
pages.

Similarly, main memory is divided into small fixed-sized blocks of (physical) memory
called frames and the size of a frame is kept the same as that of a page to have

optimum utilization of the main memory and to avoid external fragmentation.

Address Translation

Page address is called logical address and represented by page number and
the offset.

Logical Address = Page number + page offset

Frame address is called physical address and represented by a frame
number and the offset.

Physical Address = Frame number + page offset

A data structure called page map table is used to keep track of the relation
between a page of a process to a frame in physical memory.

When the system allocates a frame to any page, it translates this logical address
into a physical address and create entry into the page table to be used throughout
execution of the program.

When a process is to be executed, its corresponding pages are loaded into any
available memory frames. Suppose you have a program of 8Kb but your memory
can accommodate only 5Kb at a given point in time, then the paging concept will
come into picture. When a computer runs out of RAM, the operating system (OS)
will move idle or unwanted pages of memory to secondary memory to free up RAM
for other processes and brings them back when needed by the program.

This process continues during the whole execution of the program where the OS
keeps removing idle pages from the main memory and write them onto the
secondary memory and bring them back when required by the program.

Advantages and Disadvantages of Paging

Here is a list of advantages and disadvantages of paging −

 Paging reduces external fragmentation, but still suffer from internal
fragmentation.

 Paging is simple to implement and assumed as an efficient memory
management technique.

 Due to equal size of the pages and frames, swapping becomes very easy.

 Page table requires extra memory space, so may not be good for a system
having small RAM.

Segmentation

Segmentation is a memory management technique in which each job is divided into
several segments of different sizes, one for each module that contains pieces that
perform related functions. Each segment is actually a different logical address
space of the program.

When a process is to be executed, its corresponding segmentation are loaded into
non-contiguous memory though every segment is loaded into a contiguous block of
available memory.

Segmentation memory management works very similar to paging but here
segments are of variable-length where as in paging pages are of fixed size.

A program segment contains the program's main function, utility functions, data
structures, and so on. The operating system maintains a segment map table for

every process and a list of free memory blocks along with segment numbers, their
size and corresponding memory locations in main memory. For each segment, the
table stores the starting address of the segment and the length of the segment. A
reference to a memory location includes a value that identifies a segment and an
offset.

Operating System - Virtual Memory
A computer can address more memory than the amount physically installed on the
system. This extra memory is actually called virtual memory and it is a section of a

hard disk that's set up to emulate the computer's RAM.

The main visible advantage of this scheme is that programs can be larger than
physical memory. Virtual memory serves two purposes. First, it allows us to extend
the use of physical memory by using disk. Second, it allows us to have memory
protection, because each virtual address is translated to a physical address.

Following are the situations, when entire program is not required to be loaded fully
in main memory.

 User written error handling routines are used only when an error occurred in
the data or computation.

 Certain options and features of a program may be used rarely.

 Many tables are assigned a fixed amount of address space even though only
a small amount of the table is actually used.

 The ability to execute a program that is only partially in memory would
counter many benefits.

 Less number of I/O would be needed to load or swap each user program into
memory.

 A program would no longer be constrained by the amount of physical memory
that is available.

 Each user program could take less physical memory, more programs could
be run the same time, with a corresponding increase in CPU utilization and
throughput.

Modern microprocessors intended for general-purpose use, a memory management
unit, or MMU, is built into the hardware. The MMU's job is to translate virtual
addresses into physical addresses. A basic example is given below −

Virtual memory is commonly implemented by demand paging. It can also be
implemented in a segmentation system. Demand segmentation can also be used to
provide virtual memory.

Demand Paging

A demand paging system is quite similar to a paging system with swapping where
processes reside in secondary memory and pages are loaded only on demand, not
in advance. When a context switch occurs, the operating system does not copy any
of the old program’s pages out to the disk or any of the new program’s pages into
the main memory Instead, it just begins executing the new program after loading the
first page and fetches that program’s pages as they are referenced.

While executing a program, if the program references a page which is not available
in the main memory because it was swapped out a little ago, the processor treats
this invalid memory reference as a page fault and transfers control from the

program to the operating system to demand the page back into the memory.

Advantages

Following are the advantages of Demand Paging −

 Large virtual memory.

 More efficient use of memory.

 There is no limit on degree of multiprogramming.

Disadvantages

 Number of tables and the amount of processor overhead for handling page
interrupts are greater than in the case of the simple paged management
techniques.

Page Replacement Algorithm

Page replacement algorithms are the techniques using which an Operating System
decides which memory pages to swap out, write to disk when a page of memory
needs to be allocated. Paging happens whenever a page fault occurs and a free
page cannot be used for allocation purpose accounting to reason that pages are not
available or the number of free pages is lower than required pages.

When the page that was selected for replacement and was paged out, is referenced
again, it has to read in from disk, and this requires for I/O completion. This process
determines the quality of the page replacement algorithm: the lesser the time
waiting for page-ins, the better is the algorithm.

A page replacement algorithm looks at the limited information about accessing the
pages provided by hardware, and tries to select which pages should be replaced to
minimize the total number of page misses, while balancing it with the costs of
primary storage and processor time of the algorithm itself. There are many different
page replacement algorithms. We evaluate an algorithm by running it on a particular
string of memory reference and computing the number of page faults,

Reference String

The string of memory references is called reference string. Reference strings are
generated artificially or by tracing a given system and recording the address of each
memory reference. The latter choice produces a large number of data, where we
note two things.

 For a given page size, we need to consider only the page number, not the
entire address.

 If we have a reference to a page p, then any immediately following references
to page p will never cause a page fault. Page p will be in memory after the

first reference; the immediately following references will not fault.

 For example, consider the following sequence of addresses −
123,215,600,1234,76,96

 If page size is 100, then the reference string is 1,2,6,12,0,0

First In First Out (FIFO) algorithm

 Oldest page in main memory is the one which will be selected for
replacement.

 Easy to implement, keep a list, replace pages from the tail and add new
pages at the head.

Optimal Page algorithm

 An optimal page-replacement algorithm has the lowest page-fault rate of all
algorithms. An optimal page-replacement algorithm exists, and has been
called OPT or MIN.

 Replace the page that will not be used for the longest period of time. Use the
time when a page is to be used.

Least Recently Used (LRU) algorithm

 Page which has not been used for the longest time in main memory is the
one which will be selected for replacement.

 Easy to implement, keep a list, replace pages by looking back into time.

Page Buffering algorithm

 To get a process start quickly, keep a pool of free frames.

 On page fault, select a page to be replaced.

 Write the new page in the frame of free pool, mark the page table and restart the
process.

 Now write the dirty page out of disk and place the frame holding replaced page in
free pool.

Least frequently Used(LFU) algorithm

 The page with the smallest count is the one which will be selected for
replacement.

 This algorithm suffers from the situation in which a page is used heavily
during the initial phase of a process, but then is never used again.

Most frequently Used(MFU) algorithm

 This algorithm is based on the argument that the page with the smallest count
was probably just brought in and has yet to be used.

	Operating System - Memory Management
	Process Address Space
	Static vs Dynamic Loading
	Static vs Dynamic Linking
	Swapping
	Memory Allocation
	Fragmentation
	Paging
	Address Translation
	Advantages and Disadvantages of Paging

	Segmentation

	Operating System - Virtual Memory
	Demand Paging
	Advantages
	Disadvantages

	Page Replacement Algorithm
	Reference String
	First In First Out (FIFO) algorithm
	Optimal Page algorithm
	Least Recently Used (LRU) algorithm
	Page Buffering algorithm
	Least frequently Used(LFU) algorithm
	Most frequently Used(MFU) algorithm

